StyleGAN workshop Dangerzones
Setup Remote Jupyterhub Notebook
1. Signing into Jupyterhub via keycloak
key in your keycloak credentials here
Choose an XS slice
make sure to choose cuda 11.7 from the dropdown
2. Installing Stylegan3
conda init bash
source ~/.bashrc
git clone https://github.com/NVlabs/stylegan3.git
cd stylegan3
conda env create -f environment.yml
conda activate stylegan3
conda install cudatoolkit
downloading models
make 'pretrained' directory
mkdir pretrained
ffhq flicker faces
wget --no-check-certificate --content-disposition https://th-koeln.sciebo.de/s/j06LuPxYHRRtnQE/download -O pretrained/ffhq_faces.pkl
Wikiart
wget --no-check-certificate --content-disposition https://th-koeln.sciebo.de/s/tbjJS7XBezbAC3B/download -O pretrained/wikiart.pkl
Metfaces
wget --no-check-certificate --content-disposition https://th-koeln.sciebo.de/s/eFZAmR6dDLelSo7/download -O pretrained/metfaces.pkl
Setup Local Stylegan
1. Refer to the Github Page
For major installation process refer to the stylegan3 GitHub Page.
This is an in-depth YouTube tutorial on how to install stylegan3 locally
2. Installing Stylegan3
conda init bash
source ~/.bashrc
git clone https://github.com/NVlabs/stylegan3.git
cd stylegan3
conda env create -f environment.yml
conda activate stylegan3
conda install cudatoolkit
downloading models
make 'pretrained' directory
mkdir pretrained
ffhq flicker faces
wget --no-check-certificate --content-disposition https://th-koeln.sciebo.de/s/j06LuPxYHRRtnQE/download -O pretrained/ffhq_faces.pkl
Wikiart
wget --no-check-certificate --content-disposition https://th-koeln.sciebo.de/s/tbjJS7XBezbAC3B/download -O pretrained/wikiart.pkl
Metfaces
wget --no-check-certificate --content-disposition https://th-koeln.sciebo.de/s/eFZAmR6dDLelSo7/download -O pretrained/metfaces.pkl
Inference
For generating single images and videos, you may follow these steps.
activating conda environment
this needs to be done before every session if you want to use stylegan
conda init bash
source ~/.bashrc
conda activate stylegan3
inference images
python gen_images.py --outdir=out --trunc=1 --seeds=2 --network=https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-r-afhqv2-512x512.pkl
inference video
python gen_video.py --output=out/wikiart.mp4 --trunc=1 --seeds=0-31 --network=pretrained/wikiart.pkl
Training
For training your own datasets, you can follow these steps.
Dowload Training data
mkdir trainingdata
Group 01
wget --no-check-certificate --content-disposition https://th-koeln.sciebo.de/s/7SzJ55ZroKPf5zY/download -O trainingdata/group01.zip
Group 02
wget --no-check-certificate --content-disposition https://th-koeln.sciebo.de/s/7SzJ55ZroKPf5zY/download -O trainingdata/group02.zip
Group 03
wget --no-check-certificate --content-disposition https://th-koeln.sciebo.de/s/YGR7BaeoIBSePNl/download -O trainingdata/group03.zip
Group 04
wget --no-check-certificate --content-disposition https://th-koeln.sciebo.de/s/SsrPKyPcyswd8z2/download -O trainingdata/group04.zip
Group 05
wget --no-check-certificate --content-disposition https://th-koeln.sciebo.de/s/b1I0rgEaPcyaP44/download -O trainingdata/group05
Group 06
wget --no-check-certificate --content-disposition https://th-koeln.sciebo.de/s/Orv9FDqqKwtBMlB/download -O trainingdata/group06
Prepare training data
python dataset_tool.py --source=trainingdata/group01.zip --destination=trainingdata/group01 --resolution=512x512
start training
python train.py --help
Downloading the DangerzonesGANs
downloading dangerzones models
go into directory pretrained:
cd pretrained
Download our trained models from the KISD Modelzoo:
Group 01 - androids gynoids
wget --no-check-certificate --content-disposition https://th-koeln.sciebo.de/s/B7rOZIRzPN5rev1/download -O pretrained/group_01_220.pkl
Group 02 TBF - dataset error
Group 03 - grayscale faces
wget --no-check-certificate --content-disposition https://th-koeln.sciebo.de/s/SRcjw6DPv9AIacn/download -O pretrained/group_03_500.pkl
Group 04 -future cities
wget --no-check-certificate --content-disposition https://th-koeln.sciebo.de/s/CW8uQ2dsQbVOiXa/download -O pretrained/group_04_20.pkl
Group 05 - lamppost and sunflowers
wget --no-check-certificate --content-disposition https://th-koeln.sciebo.de/s/fb0skqUV9ypIOEl/download -O pretrained/group_05.pkl
Group 05 - encoded data